Technologies et robotiques

Postée le 01/12/2022

09:00

 

Italian Consensus Conference on the effectiveness of Robotics for the Rehabilitation of people with Neurological Health Conditions

Francesca Gimigliano (Naples, Italie)


09:30 

Implantable chronic Brain Machine Interface for movement compensation of patients with motor disabilities

Guillaume Charvet (Grenoble, France) 
 

A Brain Computer Interface (BCI) system for a chronic clinical application with a high number of degrees of freedom is one of the major challenges in the field of neuroprosthetics. 
The CEA Leti Clinatec team has developed a Brain-Computer Interface (BCI) system including the first 64-channel fully-implantable WIMAGINE® device enabling wireless brain activity recording with high fidelity in humans, along with a dedicated software environment and efficient neuronal activity decoding algorithms. This WIMAGINE-BCI system was evaluated, for the first time, in a context of a clinical trial with a tetraplegic patient (NCT02550522). During this clinical trial a patient was trained progressively to perform motor mental tasks to control a 4-limbs exoskeleton. The demonstration of a high dimensional control of 2 exoskeletic arms in 3D was performed. The long-term stability of the chronic epidural wireless recorder WIMAGINE was also  demonstrated over 3-year period after surgery.
More recently, the WIMAGINE-BCI system is also used in the context of a Brain-Spine Interface clinical trial (NCT04632290) for the restoration of walking in paraplegic patients, in the context of a collaboration with EPFL (Pr. G. Courtine) and CHUV (Pr. J. Bloch) at Lausanne.
This WIMAGINE-BCI technology has therefore been developed to meet the main challenges of a Brain Machine Interface for daily life use, such as the ability to perform a chronic and stable recording of brain activity as well as the accurate and robust decoding of a large number of degrees of freedom in real time. This opens perspectives for daily use by patients with motor disabilities to allow them to control functional effectors such as light exoskeletons or spinal cord stimulation systems.
 

 
10:00

Mesurer la sollicitation physique de patients post-AVC chronique lors de la rééducation en cabinet libéral, à l’aide d’un accéléromètre et d’un cardiofréquencemètre : étude comparative

Basil Lafitte-Houssat (Bordeaux, France) , Stéphanie Goncalves (Limoges, France) , Morgane Le Bourvellec (Poitiers, France) , Stéphane Mandigout (Limoges, France) et Noémie Duclos (Bordeaux, France)


10:10

Utilisabilité et acceptabilité d’une nouvelle application mobile « Kid’EM app » de détermination collaborative (enfant- famille- professionnels) d’objectifs de réadaptation chez l’enfant

Victoire Vannier (BREST, France) , Alexia Le Gallo (BREST, France) , Léa GUIHNEUF (BREST, France) , Sylvain Brochard (BREST, France) , Rodolphe Bailly (BREST, France) et Christelle PONS (BREST, France)


10:20

Rééducation robotisée du membre supérieur parétique post-AVC. Partie 1 : changements de sévérité motrice et impact des modalités de rééducation après 5 semaines de traitement

Ophélie Pila (Boisisse Le Roi, France) , Pascal Jamin (Valenton, France) , Petra Breuckmann (Boisisse Le Roi, France) , Anne-Gaëlle Grosmaire (Boisisse Le Roi, France) et Christophe Duret (Boisisse Le Roi, France)


10:30

Une solution open source adaptable à divers appareils d'assistance, configurable via une application, pour la notification d'obstacles par retour vibratoire ou retour visuel lumineux.

Fabien Grzeskowiak (Rennes, France) , Louise Devigne (Rennes, France) , Theresa Jachmann (Rennes, France) , François Pasteau (Rennes, France) , Marie Babel (Rennes, France) et Sylvain Guégan (Rennes, France)